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The incidence of a shock wave on a moving wing results in the origination of a complex 
spatial nonstationary flow and a change in its aerodynamic characteristics. The nonstationary 
problem of shock interaction with a delta wing at supersonic flight speeds was solved numer- 
ically earlier within the framework of the linearized theory [i] and in a complete nonlinear 
formulation [2]. The impulses of the nonstationary forces and moments during the whole inter- 
action time were evaluated in [3]. 

This paper is devoted to an analytic determination of the nonstationary aerodynamic char- 
acteristics of delta wings under the incidence of shocks in a linearized formulation by using 
the analogy with the problem of entry into an equivalent vertical gust. The results obtained 
can be used to perform rapid and sufficiently exact estimates (conversions) of instantaneous 
aerodynamic force and moment values for an arbitrary law of pressure variation behind the wave 
front. 

i. Let us examine the problem of weak shock incidence on a plane delta wing flying at 
a supersonic velocity V without slip at a zero angle of attack. The assumptions made permit 
utilization of the linearized theory of potential flows. We introduce a rectangular Oxyz co- 
ordinate system connected to the wing, whose origin is superposed on the wing apex, the Ox 
axis is directed oppositely to the flight velocity vector, the Oy axis is perpendicular to 
the plane of the wing, and the Oz axis is along the span. 

Let us first find the solution for the case when the excess pressure behind the wave 
front is constant (Ap = const, ~p/p << i) and a uniform co-flow with velocity V l = (Ap/p)a/~ 
moves behind it (p and a are the pressure and sound speed in the gas at rest, and ~ is the 
adiabatic index). The influence of the shock is that a small downwash angle ~ = v/V is cre- 
ated on the part of the wing it encloses because of the vertical component v of the co-flow 
velocity. We call that gust, which is displaced in space and produces the very same downwash 
distribution as does the incident shock on the wing, equivalent vertical. Then the analogy 
to the problem of wing entry into an equivalent vertical gust can be used to solve the problem 
under consideration. 

Let us note that during the flow around an infinite span wing (flat plate), there is the 
possibility of compiling a solution obtained on the basis of the analogy with the problem of 
entry into an equivalent vertical gust with the exact solution found by another method and 
thereby confirming the legitimacy of this analogy. Indeed, the two-dimensional problem of 
nonstationary flow by a weak shock around a plate moving at a constant supersonic speed is, 
as is known [4, 5], reduced within the framework of linearized theory to a three-dimensional 
stationary problem of the flow at a small angle of attack around a flat wing with rectangular 
supersonic leading and trailing edges by a uniform gas flow with Mach number M~ = ~. The 
appropriate pressure distribution is found in analytic form by using the well-developed ap- 
paratus of linear wing theory in a supersonic flow [6]. On the other hand, exactly the same 
pressure distribution is obtained as a result of simple calculations if the analogy between 
the flow around a plate by a displacing shock and its entry into an equivalent vertical gust 
is considered valid and the known solution of the problem of plate entry into a gust with 
arbitrary downwash distribution is used [7]. Therefore, the analogy mentioned yields an exact 
solution of the problem of the flow around an infinite span with moving at supersonic veloc- 
ity in the presence of a weak shock on it. 

This analogy is used in this paper in the more general case of a finite-span delta wing, 
as had been done in the numerical approach [i, 8]. In contrast to the solution presented in 
[9], the analytic solution obtained is sufficiently simple and has a totally reviewable form 
that makes it accessible for practical estimates. As a comparison showed, it is in conform- 
ity with known results of the theory of nonstationary flow around wings. 
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2. Let the wing have supersonic leading edges (the half-angle at the apex is ~0>aecsin 
l/M). Then the solution of the problem of entry into a gust is known for any downwash dis- 
tribution [7], but it appears most simply if the downwash is independent of the lateral co- 
ordinate z: v = v(x, t). In this case the integral of the perturbed velocity potential 
with respect to the span on the upper wing surface 

x t g ~  0 

i ~ . t) lv=+odz (2 1) , ( x , t ) = v ~  ~ ~(x,v,z. 

- - x  tg~o o 

is represented by the quadrature [7] 

~(x, t ) =  2 tg.~q~o j~' ~ d~ .[ v [~, t - -  (x - -  ~) g (0)] dO, 

0 0 

g(O)=  M+cosO 
f~ , ~ = ] / ' ~ - - - l ,  M = V / a .  

( 2 . 2 )  

Such a gust corresponds to incidence of a plane shock for which the normal to the front is 
parallel to the vertical plane of wing symmetry. Both counter- and overtaking-wave interac- 
tion with the wing is possible here. We take as beginning of the time t, the time of its ar- 
rival at the apex or at the trailing edge, respectively. Then the downwash distribution in 
the former case is 

v(x, t) = a H ( t  - kl x)~ ( 2 . 3 )  

and in the latter, being realized for M sin u < i, 

v(x, t) = a H [ t  -- k2(i -- x)], ( 2 . 4 )  

where  a = (V1/V) cos  X << 1; k l  2 = s i n  X/ (1  • M s i n  X); H i s  t h e  H e a v i s i d e  s t e p  f u n c t i o n ,  
and X i s  t h e  a c u t e  a n g l e  o f  wave i n c i d e n c e  a t  t h e  wing.  Here  and h e n c e f o r t h  a l l  t h e  l i n e a r  
d i m e n s i o n s  a r e  r e f e r r e d  t o  t h e  l e n g t h  c o f  t h e  wing r o o t  c h o r d ,  and t h e  t i m e  t o  c / a .  

S i n c e  t h e  p o t e n t i a l  ~ i s  an odd f u n c t i o n  o f  t h e  c o o r d i n a t e  y ( a n t i s y m m e t r i c  p rob lem)  
t h e n  by u s i n g  a known f o r m u l a  f rom l i n e a r  t h e o r y  f o r  t h e  p r e s s u r e  c o e f f i c i e n t  [ 7 ] ,  t h e  l i f t  
coefficient for the section x = const is expressed in terms of the derivatives of the func- 

tion ~: 

i L ( x , t )  = 4 (*x+~-*t)" ( 2 . 5 )  

Substituting (2.2) and (2.3) here, we find in the counter-interaction case 

~12 

k 1 (0) M(t +Msin?)  
o ~1(8) 

= ~s - -  [g (O) - -  kl] (x - -  ~) 

n -- t + =g (O) 6 (~)] dR, k 1 -- ~ (O) J 

(6 is the Dirac function, and ~i(8) = t - xg(8), q2 = t - klx). The nonstationary lift and 
longitudinal moment coefficients relative to the wing apex are determined from the formulas 

i I 

c U (t) = a C  (t) = S L (x, t) dx, m z (t) = a m  (t) = - -  S x L  (x, t) dx .  ( 2 . 6  ) 
0 0 

A f t e r  e v a l u a t i n g  t h e  q u a d r a t u r e s  we o b t a i n  t h e  f o l l o w i n g  f o r m u l a s  f o r  t h e  a e r o d y n a m i c  c o e f -  
f i c i e n t s  ( t r a n s i t i o n  f u n c t i o n s )  C ( t )  and m ( t )  w i t h i n  d i f f e r e n t  t im e  i n t e r v a l s :  

for 0 ! t ! kl 

_ ! [ t ~ '  ,n (t) = s [ _ _ t ?  

for k I <_ t <_ t B = I/(M + i) 

c(o=_, (_, M I, k, J + 4.Fc (t, M,. "~),, m (t) = - -  ~-~ ~ - -  -~- Y,, (t, M~ ~), 
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for t B ! t i tc = I/(M - 1) 

t (M + s in 3') - -  t 
C (t) = -~- F c (t t M.,. "f) arccos t (1 + i sin y) -- sin y 

4 arcc~ (M--   Mk14 sin ?cos ? --i ]/rt2 --  (Mt --  + 

t (M+ s i n ? ) - -  1 
m (t) -- 3~4 Fm (t, M, ?) arccos t (t + M sin y) -- sin ? 

8 [ t . ~ 3  M t - -  t 4 V  t 2 - - ( M t - - ' l - )  2 X 
~ kl ) arccos t 3nMk 1 cos 2 ? 

X (2 sin ? -kit [ t( t  + sin ? ) ( 2 -  sin y ) +  sin?l  } _ 3-@8 arccos (M _ ~2t), ' 

where Fc(t ,  M,?)  {[ ( ~_~_)2] 2t (sinZ? + t cos2?)}; 1 1 +  (i + M s i n  ~ ? ) -  
M cos '~ ? k 1 

F,~(t, M, ? ) =  Mcos3? ~k~] ] k~ Y +-k~l c~ " 

As time t C passes from the time of the beginning of shock interaction with the wing, the phase 
of the nonstationary is terminated and its stationary flow at an angle of attack a is set up 
for which 

C = 4/~, m = - -  8/3~. ( 2 . 7 )  

According to the formulas obtained, the nonstationary aerodynamic coefficients C and m 
of a wing with supersonic edges are independent of the sweepback angle as in the steady state 
flow case. The substantially nonmonotonic dependences C(t) and m(t) are shown in Fig. 1 
(M = 2, 7 = 20, 40, 60 ~ for curves 1-3) for a counterinteraction; the dashed lines are re- 
sults of computations in a quasistationary approximation that yields a monotonic change in 
these quantities with a very much more early emergence at the steady value. 

Arranging the dependence Cy(t), we find that the impulse of the nonstationary part of the 

tc 
P 

lift coefficient during the whole time of wave interaction with the wing f =j (cv--4~/~)dt 
0 

equals I = - (4a/3(M 2 - 1)3/2)[1 + (2M(M 2 -- l)sin 7)/(i + M sinT)]. Exactly the same expres- 

sion is obtained for I in [3] by the method of [i0] without requiring knowledge of the instan- 
taneous values Cy(t). 

In the case when the shock overtakes the wing, we have from (2.2) and (2.4)-(2.6): 

in the interval 0 ! t ! k2 

C(t) = 4Gc(t, M, y), m(t) = --4Gin(t, M, y), 

for k 2 ! t ! t~ = t B + k 2 

C (t) = 4G c (t, M, "f) + - ~  - -  , 

for t~ <_ t <_ t~ = t C + k 2 

4 G e ( t , M  ,.f) arccos (M- - s iny ) ( t - -k2 ) - - i  4 ( t  )2 M(t - -k2 ) - - i  
C (t) = -~ (t  - -  M s in  ?) t + ~ ~ - 2 - -  t J a r c c o s  t - -  k 2 

4t s in y ] / ( t  - -  k~) 2 - -  [M (t - -  ks)  - -  i ]  ~, 
aMk~ cos ~ u 

m (t) = - -  4G,~ (t, M, "f) + g ~  - - 1  , 

4 arecos [M --  ~2 (t - -  k2) ] + + 7  
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(M -- sin ~,) (t --  k~) -- 1 
m (t) = - -  4_  G., (t, M, ?) arccos + 

a (1 -- M sin ?) t 

8 ( . ~  )3arcaosM(~--k2)  - t  8 
+ ~-M - -  I t"-~2 3~1~ arccos [M - -  g2 (t - -  k2)l - -  

4 F(t--k2)2--___~[?(!2k2)--J]2 {2 s i n ? _  (_~  2 _ t ) X  
3 ~ M k  2 cos  2 ? 

where 

2 + t ( G~(t~ M, 

The overtaking interaction is characterized by a more continuous stage of nonstationary 
flow around the wing t~ = t C + k 2, after which the aerodynamic coefficients reach their 
steady-state values (2.7). The dependences C(t) and m(t) are monotonic (Fig. 2) and qualita- 
tively similar to their quasistationary approximation (dashed lines). The graphs are con- 
structed for M = 2 (y = i0, 15, 20 ~ for curves 1-3). 

For perpendicular shock incidence (7 = 0) the formulas obtained above simplify and yield, 
in the limit as 7 § 0 after expanding the indeterminacies, expressions for the transition func- 
tions of the lift and longitudinal moment coefficients of a delta wing for a step change in 
the angle of attack, as should have been expected (see [8, ii], say). 

The dependences C(t), m(t) presented above correspond to a constant (or very slowly vary- 
ing) excess pressure behind the wave front. If its changes are substantial, then within the 
framework of the linearized theory utilized, they can be taken into account by using the Du- 
hamel integral [i, 8, ii]. For instance, if the excess pressure during the dimensionless time 
T diminishes linearly from the initial value Ap to zero and then remains equal to zero, then 

t 

i 
J C(T) d~, a n d  the increments in the aerodynamic characteristics have the form Cz(t ) = C(t)--- F 
0 (t--T) 

analogously for ms Taken here as lower limit of integration is the greater of the quanti- 
ties indicated in the parentheses. Graphs of the functions Cs ms are given in Figs. 
3a and b for counterinteraction (M = 1.5, 7 = 20~ and different values of the duration T of 
the acting pressure impulse (T = i, 2, 5, for curves 1-3). 
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3. Let us consider a greatly sweptback wing. Here the angle is ~0<<i and the theory 
of nonstationary flow around a wing of ultimately small span is applicable, resulting in the 
law of plane sections. The shock front moving oppositely to the wing arrives at a section 
with coordinate x at the time t = klx. Consequently, by using the results of [7]~ we write 
the integral of the potential with respect to the span (2.1) in the problem of wing entry into 
an equivalent gust with the downwash distribution (2.3) in the form 

{ t -k , ,  ~ (3. l)  

w h e r e  X(X) = 2 x  - x 2 / 2  i n  t h e  b a n d  0 ~ �9 ~ 2 ,  w h i l e  f o r  < >> 1 ( a c t u a l l y  f o r  x > 2)  t h e  f o l -  
l o w i n g  a s y m p t o t i c  f o r m u l a  h o l d s  

I 3 [In4~-- 29 
%(I:)----2(I + 2 Real [ ~  e B~] -}-41: ~ 4~ 4 

w h e r e  A = 0 . 7 5  e - ~  and  B = 1 . 3 0 6 e  2 " 1 2 i  a r e  c o m p l e x  n u m b e r s .  S u b s t i t u t i n g  ( 3 . 1 )  i n t o  ( 2 . 5 )  
and  ( 2 . 6 ) ,  we o b t a i n  

x l 

L (x, t) ---- 4 ~  tg  % N  (x, t) t t  (t - -  klx),: ey (t) = J" N (z.,. t) dz~ 
0 

x l 

m~ (t) = - -  ~ x N  (x~ t) dx,  
0 

N (x, t) = 2x% ~ = tg r ] ~- 

x 1 = m i n  ( t / k l ,  t). 
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As t grows the coefficients c v and m z asymptotically approach their stationary values Cy~ = 
2~ tan ~0 = (i/2)~k, mz~ ~ -(i/3)~k (k = 4 tan ~0 is the wing span). 

Graphs displaying the change in the nonstationary aerodynamic characteristics C(t) and 
m(t) with time and their comparison with the quasistationary approximation are given in Fig. 
4 (M = 1.5, y = 20 ~ , curves 1-3 correspond to 3, 6, I0~ It is seen that the nonstationar- 
ity of the flow influences a small span wing much more strongly than a wing with supersonic 
leading edges. It results in substantially ~nonmonotonic dependence of the aerodynamic coef- 
ficients on the time with quite definite "discards" relative to the steady values. The max- 
imal values of C(t) and m(t) are achieved at the time of total enclosure of the wing by the 
shock. As parametric computations showed, the relative magnitudes of the "discards" (the 
differences Cma x - C~, Imlmax - ImI~) grow as the angle at the wing apex diminishes (Fig. 4) 
as do also the Mach flight number and the angle of shock incidence. 

It is seen from the comparison executed in Fig. 4 that the quasistationary approxima- 
tion yelding the monotonic change in the aerodynamic characteristics does not permit determine-/ 
tion of their maximal values and the results of a computation of the substantially nonstation- 
dry flow must be used for this. 
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